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This thesis deals with the study of a system of nonlinear hyperbolic equa-
tions that analyses the evolution of the system of cells of a normal epidermis
and the influence of some medicinal treatments administred in certain pur-
poses. The hyperbolic system is coupled with a nonlinear parabolic problem
that describes the interaction between the epidermis and the treatment.
The structure of the thesis is the following: in the first chapter we briefly

present the model with age and space structure of a normal epidermis pro-
posed in [27], model that describes the structure of a normal epidermis that
is formed of four types of cells. In the second chapter we start from this
model and we adapt it for the study of an epidermis that has been admin-
istred a medication with the purpose of adjusting the processes of divizion
and differentiation of cells. Thus we obtain the mathematical model for the
suprabasal layer that represents the main problem we deal with. In order
to determine the entrances in the system that represents the model for the
suprabasal layer, we present in this chapter the model in the basal layer and
we obtain its solution. This chapter also contains the calculation of the ve-
locity of the cells in the suprabasal layer and the condition for determining
the boundary surface.
In the third chapter we demonstrate the existance of the strict solution

of an intermediate generic problem that appears in the demonstration of the
existance of the solution of the system of equations from the forth chapter.
We use here the theory of semigroups of linear operators (Hille-Yosida).
In the forth chapter we present the properties of function U that repre-

sents the velocity of the cells and we demonstrate the existance and unicity of
the solution of the problem we deal with. Here we use a fixed point procedure
that is essentially based on the Schauder’s fixed point theorem.
In the last chapter of this paper we propose a numerical solution for

the problem. The numerical scheme proposed is based on a finite difference
scheme that uses the approximation of the characteristics of the nonlocal
boundary value problems that compose the mathematical model. The final
part of the chapter contains the expressions of the model parameters, the
error computation, numerical results and their interpretation.
The models of populations structured depending on age, size and spatial

structure have many applications in biology. Thus in [27], [28], [29], are
presented and analyzed models that describe the structure and the evolution
of the cells that compose the epidermis. The epidermis is formed of multiple
layers of epitelial cells that undergo a continuous process of renewal. In
[27] the authors propose a stationary model for the evolution of a normal,
unperturbed epidermis, this model having age and space structure. In normal
skin the proliferation of the cells takes place almost exclusively in the basal
layer where the stem cells generate proliferant cells that after some rounds

1



of proliferation cease to divide, thus producing non-proliferant (quiescent),
differentiated cells. The model proposed in [27] for the domains

¡
0, a+i

¢
×

(0, L) , i = 1, 4 includes four types of cells (proliferating -1, differentiated -2,
corneous -3 şi apoptotic -4).
In what follows we refer to the model with age and space structure of

the cells for the evolution of the suprabasal epidermis presented in [27]. We
consider a one-dimensional geometry so that the Cartesian coordinate x is
perpendicular to the epidermis plane. The variable x varies from x = 0 (the
suprabasal layerl) to x = L (the end of the stratum corneum).
In normal epidermis the proliferation of cells occurs in the basal layer

where stem cells generate proliferant cells. After four-five rounds of prolifer-
ation these cells cease to divide, thus producing non-proliferating (quiescent),
differentiated cells. The differentiated cells are pushed to the suprabasal layer
and are transformed into corneous cells by a process of keratinization. The
model includes four types of cells: proliferating cells, differentiated cells, cor-
neous cells and apoptotic cells. The apoptotic cells are dead cells that result
from the phenomenon of pathological mitosis and from the death of prolif-
eratint and differentiated cells due to external causes. Those types of cells
are indexed by i = 1, ..., 4. We denote by ni (a, x) the density with regerd
to age a ∈

£
0, a+i

¤
of the number of cells i per unit volume, at position x.

We assume that all cells move towards the surface of the epidermis with the
same positive velocity u (x) .
The innovation of the model proposed in this tesis is that the model is

more complex because we take into account a medicinal treatment admin-
istred to the system of cells, with the purpose of influencing on the prolif-
eration of proliferating cells into themselves in the suprabasal layer. As a
result of this treatment, the cells n1(a, x) stop proliferating for a life period,
remaining inactive and forming the population named n5 (a, x). If the treat-
ment ceases or is not enough, the cells n5 (a, x) may begin to proliferate at
a certain age, turning back into the population n1(a, x). Another situation
consists in accelerating the proliferation of proliferating cells if this situation
is desired. We denote by σ the concentration of the medicine and by λ1, λ5
the rates of transfer corresponding to the transformation of the cells of types
1 and 5 respectively, as a result of the treatment.
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2. The mathematical model
2.1. The mathematical model for the suprabasal layer

In the conditions above, the model that describes the structure of the
epidermis in the domains

¡
0, a+i

¢
× (0, L) , i = 1, 5 is the following:

⎧⎪⎪⎨⎪⎪⎩
∂n1
∂a
+ ∂

∂x
(un1) + β1 (a)n1 + μ1 (a, x)n1 + λ1 (σ)n1 − λ5 (σ)n5 = 0,

n1 (0, x) = χ (x)
R a+1
0

βP (a)n1 (a, x) da,

u (0)n1 (a, 0) = S1 (a) ,

(1)

⎧⎪⎪⎨⎪⎪⎩
∂n2
∂a
+ ∂

∂x
(un2) + β2 (a)n2 + μ2 (a, x)n2 = 0,

n2 (0, x) = r (x)
R a+1
0

β1 (a)n1 (a, x) da,

u (0)n2 (a, 0) = S2 (a) ,

(2)

⎧⎪⎪⎨⎪⎪⎩
∂n3
∂a
+ ∂

∂x
(un3) + β3 (a)n3 = 0,

n3 (0, x) =
R a+2
0

β2 (a)n2 (a, x) da,

u (0)n3 (a, 0) = 0,

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂n4
∂a4
+ ∂

∂x
(un4) + β4 (a4)n4 = 0,

n4 (0, x) =
2P

i=1

R a+i
0

μi (a, x)ni (a, x) dai,

+(2− r (x))
R a+1
0

β1 (a)n1 (a, x) da,

u (0)n4 (a, 0) = 0,

(4)

⎧⎪⎪⎨⎪⎪⎩
∂n5
∂a
+ ∂

∂x
(un5) + μ5 (a, x)n5 + λ5 (σ)n5 − λ1 (σ)n1 + β5 (a)n5 = 0,

n5 (0, x) = 0,

n5 (a, 0) = 0,

(5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−d2σ
dx2
= d1 (σ)

R a+1
0

n1 (a) v1 (a) da

+d2 (σ)
R a+2
0

n2 (a) v2 (a) da

+d5 (σ)
R a+5
0

n5 (a) v5 (a) da+ f(x),

σ (0) = σ0,
dσ
dx
(L) + eασ (L) = σL.

(6)
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Equation (6) describes the action of the treatment. We consider the treat-
ment to be administred by a flux type relation or by a Dirichlet condition.
In the problem (1)-(6) we made the following notations:
βp represents the rate of proliferation (fertility) of the cells of type 1 that

are transformed in cells of type 1;
β1 represents the rate of transfer of proliferating cells into differentiated

cells;
β2 represents the rate of tranzition of differentiated cells into corneous

cells;
β3 represents the rate of degradation of corneous cells;
β4 represents the rate of degradation of the apoptotic cells into liquid

waste;
β5 represents the rate of degradation of the cells n5;
σ represents the concentration of the treatment;
di represents the absorption rate of the medication by the cells of type i,

i ∈ {1, 2, 5};
λi represents the rate of transformation of the cells of type i as a result

of the medicinal treatment, i ∈ {1, 5}.
The function r represents the medium number of viable cells that result

from the process of division of the proliferating cells. In normal conditions
r ≡ 2. In pathological conditions, r ∈ [0, 2) . The function χ represents
the number of proliferating cells that are obtained from a division of the
proliferating cells into themselves. If r = 2 then χ = 0 and if r = 0 then
χ = 1 or χ = 2.
The functions μ1, μ2 represent the rates of mortality of the proliferat-

ing cells and differentiated cells, respectively, due to external causes. The
functions S1 (a) , S2 (a) represent the flux of proliferating and differentiated
cells,respectively, from the basal layer, generated by the stem cells. We sup-
pose that in the basal layer we do not have entries of cells of types 3 and 4,
and so we consider S3 (a) = S4 (a) = 0.
We consider the rates βi, βp to depend on the age of the cells and to

blow-up on a = a+i , i = 1, 5 so thatZ a+i

0

βi (a) da = +∞, i = 1, 5, (7)

Z a+1

0

βp (a) da = +∞. (8)

Thus, the age of the cells ni is limited by a finite value a
+
i , i = 1, 5 and

the density of the cells ni is annuled at a = a+i . We consider a
+
1 = a+5 .
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2.4. The model in the basal layer

In what follows we will complete the model (1)-(6) with a model that
describes the activity of the cells in the basal layer. The purpose of this
model is to obtain the analytic expressions for the functions S1, S2, S3, S4,S5.
These functions represent the entries to the system (1)-(6) and modelate

the activity of producing the cells in the basal layer.
The functions S1 (a) , S2 (a) represent the flux of proliferating and differ-

entiated cells, respectively, from the basal layer and represent the entries into
the system. We consider that we do not have a flux of corneous cells from
the basal layer, so S3 (a) = 0.
Leaving aside the spacial structure of the basal layer and following the

ideas from [38] we can describe the population of cells by the age densities
of the number of cells per unit volume. Let m be the number of rounds of
division of the proliferating cells, νi (a) the age density of the cells into the
i-th round of division, νD (a) the age density of the differentiated cells and
νA (a) the age density of the apoptotic cells. We can write the following
system of equations:½

∂ν1
∂a
= −

¡
β1 (a) + μ10 (a)

¢
ν1 (a) ,

ν1 (0) = s,
(9)(

∂ν2
∂a
= −

¡
β1 (a) + μ10 (a)

¢
ν2 (a) ,

ν2 (0) = r0
R a+1
0

β1 (a) ν1 (a) da,
(10)

...(
∂νm−1
∂a

= −
¡
β1 (a) + μ10 (a, t)

¢
νm−1 (a) ,

νm−1 (0) = r0
R a+1
0

β1 (a) νm−2 (a) da,
(11)(

∂νm
∂a
= −

¡
β1 (a) + η1 (a) + μ10 (a)

¢
νm (a) ,

νm (0) = r0
R a+1
0

β1 (a) νm−1 (a) da,
(12)(

∂νD
∂a
= −

¡
η2 (a) + μ20 (a)

¢
νD (a) ,

νD (0) = r0 (t)
R a+1
0

β1 (a) νm (a) da,
(13)

⎧⎪⎨⎪⎩
∂νA
∂a
= − (β4 (a) + η4 (a)) νA (a) ,

νA (0) =
Pm

i=1

R a+1
0

¡
μ10 (a) + (2− r0)β1 (a)

¢
νi (a) da

+
R a+2
0

μ20 (a) νD (a) da.

(14)

In the formulas above, s characterizes the input of proliferating cells that
are generated by stem cells, β1 (a) represents the rate of transfer of the prolif-
erating cells, μ10, μ20 represent the distructive action of the external agents,

5



η1, η2 represent the rate of detachment of the cells in the m-th round of
division and of the differentiated cells, respectively. The function η4 (a) rep-
resents the rate of detachment of the apoptotic cells from the basal layer.

Under these circumstances, the flows S1 (a) and S2 (a) are given by the
formulas:

S1 (a) = η1 (a) νm (a) , (15)

S2 (a) = η2 (a) νD (a) , (16)

S4 (a) = η4 (a) νA (a) . (17)

We will consider that the flow of the corneous cells in the suprabasal layer is

equal to zero, i.e. S3 (a) = 0.

2.5. The transformed model in the suprabasal layer

We introduce the survival probability functions :

Mi (ai) = exp

µ
−
Z ai

0

βi (ξ) dξ

¶
, i = 1, 5, (18)

and instead of the state variables ni (a, x) (the density of the i-th cells)
we introduce the normalized densities:

pi (a, x) =
ni (a, x)

Mi (a)
, i = 1, 5. (19)

The velocity of the cells was determined in paragraph 2.3. Since u depends
on pi, we adopt the following notation for the velocity of the cells

U (x, p) = u0 +
1

Φ∗

5X
i=1

Z x

0

Z a+i

0

ki (a, ξ)Mi (a) pi (a, ξ) dadξ, (20)

where u0 > 0 is

u0 =
1

Φ∗

5X
i=1

Z a+i

0

vi (a)Si (a) , (21)

and p = (p1, p2, p3, p4, p5) .
If we use now (19) the problem (1)-(6) becomes:⎧⎪⎨⎪⎩
∂p1
∂a
+ ∂

∂x
(U (x, p) p1) + (μ1 (a, x) + λ1 (σ)) p1 − λ5 (σ) p5

M5(a)
M1(a)

= 0,

p1 (0, x) = χ (x)
R a+1
0

βp (a) p1 (a, x)M1 (a) da,

p1 (a, 0) = eN1 (a) ,

(22)
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⎧⎪⎨⎪⎩
∂p2
∂a
+ ∂

∂x
(U (x, p) p2) + μ2 (a, x) p2 = 0,

p2 (0, x) = r (x)
R a+1
0

β1 (a) p1 (a, x)M1 (a) da,

p2 (a, 0) = eN2 (a) ,

(23)

⎧⎪⎨⎪⎩
∂p3
∂a3
+ ∂

∂x
(U (x, p) p3) = 0,

p3 (0, x) =
R a+2
0

β2 (a) p2 (a, x)M2 (a) da,
p3 (a, 0) = 0,

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂p4
∂a4
+ ∂

∂x
(U (x, p) p4) = 0,

p4 (0, x) =
P2

i=1

R a+i
0

μi (a) pi (a, x)Mi (a) da

+(2− r (x))
R a+1
0

β1 (a)M1 (a) p1 (a, x) da,
p4 (a, 0) = 0,

(25)

⎧⎨⎩
∂p5
∂a
+ ∂

∂x
(U (x, p) p5) + (μ5 (a, x) + λ5 (σ)) p5 − λ1 (σ) p1 = 0,

p5 (0, x) = 0,
p5 (a, 0) = 0,

(26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d2σ

dx2
= d1 (σ)

R a+1
0

M1 (a) v1 (a) p1 (a, x) da

+d2 (σ)
R a+2
0

M2 (a) v2 (a) p2 (a, x) da

+d5 (σ)
R a+5
0

M5 (a) v5 (a) p5 (a, x) da+ f(x),

σ (0) = σ0,
dσ
dx
(L) + eασ (L) = σL.

(27)

In the problem above a+i , L > 0 and μi, βi,Mi, eNi, λi are known functions.

Hypotheses:

i) μi ∈ C2 ([0, a+]× [0, L]) ;μi ≥ 0;

ii) βi ∈ L1loc
¡
0, a+i

¢
;
R a+i
0

βi (a) da = +∞, βi ≥ 0, i = 1, 5,

β1 = β5 + δ (a) , |δ (a)| ≤ δ; δ ∈ L∞
¡
0, a+1

¢
.

iii) r ∈ C1 ([0, L]) , 0 ≤ r (x) ≤ 2, x ∈ [0, L] .

iv) eNi ∈ C2
¡£
0, a+i

¤¢
, eNi ≥ 0, ai ∈

£
0, a+i

¤
, unde

eNi (a) =
Ni (a)

Mi (a)
=

Si (a)

u0Mi (a)
, ai ∈

£
0, a+i

¤
, i = 1, 2, (28)
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v) χ ∈ C [0, L] ;

vi) Mi (a) = exp
¡
−
R a
0
βi (ξ) dξ

¢
, i = 1, 5;

vii) λ1, λ5 ∈ Lip (R) ∩ L∞ (R) ;
viii) vi ∈ C1

£
0, a+i

¤
, i = 1, 5;

ix) βp ∈ L1loc
¡
0, a+1

¢
,
R a+1
0

βp (a) da = +∞, βp ≥ 0,
¯̄
βp − β1

¯̄
< δp, δp > 0;

x) d1, d2, d5 ∈ Lip (R) ∩ L∞ (R)

3. Preliminary results

In the following theoretical results we assume L to be fixed, and its de-
termination will be done numerically. The system (22)-(27) will be solved by
fixed point theorems. We chose the vector (p1, p2, p3, p4, p5) from a certain
space of functions, we fix p1, p2, p3, p4, p5 in the nonlinear terms from the
equations (22)-(27) and in certain linear terms. Thus, each of the systems
(22)-(26) has the following generic form:

⎧⎨⎩ ϕa + (g (x)ϕ)x + h (a, x)ϕ = f, (a, x) ∈ (0, a+)× (0, L) ,
ϕ (a, 0) = G (a) , a ∈ (0, a+) ,
ϕ (0, x) = F (x) , x ∈ (0, L) ,

(29)

We make the following hypotheses:

g ∈ H2 (0, L) , g > 0 for x ∈ (0, L) , (30)

G ∈ C2
£
0, a+

¤
, F ∈ H1 (0, L) , F (0) = G (0) , (31)

h ∈ C2
¡£
0, a+

¤
× [0, L]

¢
, f ∈ C1

¡£
0, a+

¤
;H1 [0, L]

¢
. (32)

The system (29) is linear, with local boundary conditions and with free
boundary.

Definition 3.1. We call a strict solution of the problem (29) a function

ϕ ∈ C1
¡£
0, a+

¤
;L2 (0, L)

¢
∩ C

¡£
0, a+

¤
;H1 (0, L)

¢
(33)

that satisfies (29).

Let

h+ = khkC1([0,a+]×[0,L]) (34)
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' =
3

2
kgxk∞ + kgxxk

√
L+ h+ (L+ 1) +

1

2
. (35)

In what follows, we will denote the norm of a function u ∈ L2 (0, L) by
kuk .

The central result of the following developments is given by Theorem 3.1
.
Theorem 3.1. We assume that the hypotheses (30), (31), (32) hold.

Then, the problem (29) has an unique strict solution which satisfies the
inequality

kϕkC([0,a+];H1(0,L)) ≤ e'a+{kFkH1(0,L) +
√
a+
p
g (0) kGkC[0,a+]

+
√
a+ kfkC([0,a+];H1(0,L))}. (36)

If in addition

F (x) ≥ 0 for x ∈ [0, L] , G (a) ≥ 0 for a ∈
£
0, a+

¤
, f = 0, (37)

then the solution of the problem (29) satisfies the property

ϕ (a, x) ≥ 0, (∀) (a, x) ∈
£
0, a+

¤
× [0, L] . (38)

4. Results of existence and unicity for the complete model

Our purpose in this chapter is to demonstrate the existence and unicity
of the solution of the problem (22)-(27).

We will consider the spaces

Vi = C
¡£
0, a+i

¤
;H1 (0, L)

¢
and Hi = C

¡£
0, a+i

¤
;L2 (0, L)

¢
(39)

kψkVi = max
a∈[0,a+i ]

kψ (a)kH1(0,L) , kψkHi
= max

a∈[0,a+i ]
kψ (a)kL2(0,L) .

Y =
5Y

i=1

C
¡£
0, a+i

¤
;L2 (0, L)

¢
, (40)

kzkY =
Ã

5X
i=1

kzik2Hi

! 1
2

, z = (z1, z2, z3, z4, z5) ∈ Y. (41)

Let R > 0. We consider the set

M =
n
z ∈ Y ; zi ∈ Vi, kzikVi ≤ R, zi (a, x) ≥ 0, zi (a, 0) = eNi (a) , i = 1, 5

o
,

(42)
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R <
u0√
LCα

. (43)

In order to assure the positivity of the function U we will search for
solutions of the problems (22)-(26) that satisfy the property

kpikC([0.a+i ];H1(0,L)) <
u0√
LCα

, (44)

Cα =
1

Φ∗

5X
i=1

°°°eki°°°
L1(0,a+i ;C1[0,L])

. (45)

The main result is given by the following theorem. Let K and L be
two positive constants that depend on the parameters of the problem. This
dependence is described by some very complicated expressions what will be
determined during the demonstration of Teorem 4.1. From this reason we do
not indicate them in the theorem.

Theorem 4.1. Let u0,.Cα and R so that (43) takes place and let K so

that K <R. Then the problem (22)-(26) has at least one solution
p = (p1, p2, p3, p4, p5) so that

pi ∈ C1
¡£
0, a+i

¤
;L2 (0, L)

¢
∩ C

¡£
0, a+i

¤
;H1 (0, L)

¢
, i = 1, 5, (46)

kpikC([0,a+];H1(0,L)) < R, i = 1, 5, (47)

0 ≤ pi (a, x) ≤ CN +
u0
Cα

, (a, x) ∈
£
0, a+i

¤
× [0, L] , i = 1, 5. (48)

In addition, for L <1 , the solution is unique.

We fix z ∈M and we define

U (x, z) = u0 +
1

Φ∗

5X
i=1

Z x

0

Z a+i

0

eki (a, ξ) zi (a, ξ) dadξ. (49)
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4.2. The demonstration of the existence and unicity of the so-
lution of the system

We remark that the solution of the system in σ depends on pi and we
note it σp. We take z = (z1, z2, z3, z4, z5) ∈ M. We fix this z in (22)-(27)
in all the nonlinear terms (respectively in U (x, z) ), in the right member of
equation (22), in the right member of the boundary condition in a = 0 from
(22) and in the right member of equation (27).

Thus we obtain the system:

⎧⎪⎨⎪⎩
∂p1
∂a
+ ∂

∂x
(U (x, z) p1) + (μ1 (a, x) + λ1 (σ)) p1 − λ5 (σ) z5

M5(a)
M1(a)

= 0,

p1 (0, x) = χ (x)
R a+1
0

βp (a) z1 (a, x)M1 (a) da,

p1 (a, 0) = eN1 (a) ,

(50)

⎧⎪⎨⎪⎩
∂p2
∂a
+ ∂

∂x
(U (x, z) p2) + μ2 (a, x) p2 = 0,

p2 (0, x) = r (x)
R a+1
0

β1 (a) p1 (a, x)M1 (a) da,

p2 (a, 0) = eN2 (a) ,

(51)

⎧⎨⎩
∂p3
∂a
+ ∂

∂x
(U (x, z) p3) = 0,

p3 (0, x) =
R a+2
0

β2 (a) p2 (a, x)M2 (a) da,
p3 (a, 0) = 0,

(52)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂p4
∂a
+ ∂

∂x
(U (x, z) p4) = 0,

p4 (0, x) =
2P

i=1

R a+i
0

μi (a) pi (a, x)Mi (a) da

+(2− r (x))
R a+1
0

β1 (a)M1 (a) p1 (a, x) da,
p4 (a, 0) = 0,

(53)

⎧⎨⎩
∂p5
∂a
+ ∂

∂x
(U (x, z) p5) + (μ5 (a, x) + λ5 (σ)) p5 − λ1 (σ) p1 = 0,

p5 (0, x) = 0,
p5 (a, 0) = 0,

(54)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d2σ

dx2
= d1 (σ)

R a+1
0

M1 (a) v1 (a) z1 (a, x) da

+d2 (σ)
R a+2
0

M2 (a) v2 (a) z2 (a, x) da

+d5 (σ)
R a+5
0

M5 (a) v5 (a) z5 (a, x) da+ f(x),

σ (0) = σ0,
dσ
dx
(L) + eασ (L) = σL.

(55)
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Let σ be the solution of the problem (55) and p = (p1, p2, p3, p4, p5) the
solution of the problem (50)-(54)

Let the mapping
ψ :M→M, ψ (z) = p, (56)

that associates to the element z = (z1, z2, z3, z4, z5) ∈M the element
p = (p1, p2, p3, p4, p5) . We demonstrate that the mapping ψ is well defined
and that it satisfies the conditions from Schauder’s theorem, and so it has a
fixed point. After that we show that the mapping ψ is a contraction, so the
solution of the system (22)-(26) is unique.
We consider the problem (55)
Proposition 4.1. If

v1Ma+1 L1 + v2Ma+2 L2 + v5Ma+5 L5 <
2

L2
³
CN +

√
LR
´ , (57)

then the problem (55) has an unique solution σ ∈ H2 (0, L) .
Proposition 4.2. Let z, z ∈M and σ, σ the solutions of the problem

(55) corresponding to z and z, respectively. If (57) takes place then it exists
Cσ > 0 so that:

kσ − σk ≤ Cσ kz − zkY (58)

For the calculations that follow we remark that the problems (50)-(54)
have the form⎧⎪⎪⎨⎪⎪⎩

∂pi
∂a
+ ∂

∂x
(g (x) pi) + hi (a, x) pi = fi (a, x) , (a, x) ∈

¡
0, a+i

¢
× (0, L)

pi (0, x) = Fi (x) , x ∈ (0, L)
pi (a, 0) = Gi (a) , a ∈

¡
0, a+i

¢
.

(59)

Proposition 4.3. For K < R the mapping (56) is well defined, i.e.
ψ (z) ∈M, (∀) z ∈M.
Proposition 4.4. The mapping ψ :M→M given by (56) is continuous

with respect to the norm induced onM by the norm from Y .

Proposition 4.5. ψ (M) is relatively compact in Y.
By using Schauder’s theorem we obtain thar the mapping ψ has a fixed

point.
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5. Numerical solution of the problem

5.1. Numerical scheme
In order to obtain a numerical solution of the problem (22)-(27) we will

use a finite difference scheme. In order to build the finite difference scheme
we will follow the ideas presented in [28]. We will write U (x) instead of
U (x, p). We obtain a system equivalent to (22)-(27). We multiply (22)-(27)
by U (x) and we introduce the functions:

pi (a, x) = U (x) pi (a, x) , i = 1, 5. (60)

ni (a, x) =Mi (a) pi (a, x) =Mi (a)
pi (a, x)

U (x)
, i = 1, 5. (61)

The system (22)-(27) becomes:

⎧⎨⎩
∂p1
∂a
+ U (x) ∂p1

∂x
+ (μ1 (a, x) + λ1 (σ)) p1 − λ5 (σ) p5

M5(a)
M1(a)

= 0,

p1 (0, x) = F1 (x) ,
p1 (a, 0) = G1 (a) ,

(62)

⎧⎨⎩
∂p2
∂a
+ U (x) ∂p2

∂x
+ μ2 (a, x) p2 = 0,

p2 (0, x) = F2 (x) ,
p2 (a, 0) = G2 (a) ,

(63)

⎧⎨⎩
∂p3
∂a
+ U (x) ∂p3

∂x
= 0,

p3 (0, x) = F3 (x) ,
p3 (a, 0) = G3 (a) ,

(64)

⎧⎨⎩
∂p4
∂a4
+ U (x) ∂p4

∂x
= 0,

p4 (0, x) = F4 (x) ,
p4 (a4, 0) = G4 (a4) ,

(65)

⎧⎨⎩
∂p5
∂a5
+ U (x) ∂p5

∂x
+ (μ5 (a5, x) + λ5 (σ)) p5 − λ1p1 = 0,

p5 (0, x) = F5 (x) ,
p5 (a5, 0) = G5 (a5) ,

(66)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−U (x) d2σ
dx2
= d1

R a+1
0

M1 (a) v1 (a) p1da

+d2
R a+2
0

M2 (a) v2 (a) p2da

+d5
R a+5
0

M5 (a) v5 (a) p5da+ U (x) f (x) ,
σ (0) = σ0,

dσ
dx
(L) + eασ (L) = σL,

(67)
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We obtain the following equations by discretization

P i+1,j+1
1 =

λ5 (σ
j+1)

Mi
5

Mi
1
P i,j
5 h+ P i,j

1

1 + h
¡
μi,j1 + λ1 (σj+1)

¢ , i = 0, na+1 − 1, (68)

P i+1,j+1
2 =

P i,j
2

1 + μi,j2 h
, i = 0, na+2 − 1, (69)

P i+1,j+1
3 = P i,j

3 , i = 0, na+3 − 1, (70)

P i+1,j+1
4 = P i,j

4 , i = 0, na+4 − 1, (71)

P i+1,j+1
5 =

hλ1 (σ
j+1)P i,j

1 + P i,j
5

1 + h
¡
μi,j5 + λ5 (σj+1)

¢ , i = 0, na+5 − 1. (72)

U j+1 =
h

Φ∗

⎡⎣na+1 −1X
i=0

vi1M
i
1P

i,j+1
1 +

n
a+2 −1X
i=0

vi2M
i
2P

i,j+1
2

+

n
a+3 −1X
i=0

vi3M
i
3P

i,j+1
3 +

n
a+4 −1X
i=0

vi4M
i
4P

i,j+1
4

+

n
a+5 −1X
i=0

vi5M
i
5P

i,j+1
5

⎤⎦ , (73)

The numerical error estiomation for pi, i = 1, 5 is of the same order as h.

5.2. Numerical algorithm
Step 0. Data initialization: a+i , a

−
i , ..., na+i , h, σ0, σL, α, eα, functions βi,Mi, vi,

μi, χ, r, all the parameters from the basal layer.

Step 1. Computations of the functions Gl (a) , Fl (x) , l = 1, ..., 5 for j = 0
and for i = 0.

Step 2. Verification of the conditions of campability.

Step 3. Computation of U0 = u0.

Step 4. Initialization of j = 0, k0 = u0h and L0 = 0.

Step 5. Computation of Lj+1 and of the following values in this order:
pi+1,j+11 , p0,j+11 , p0,j+12 , pi+1,j+12 , p0,j+13 , pi+1,j+13 , p0,j+14 , pi+1,j+14 , p0,j+15 , pi+1,j+15 ,
U j+1, for i = 0, ..., na+l

− 1 (l = 1, ..., 5) and j = 0, ..., Nx − 1.

14



Step 6. Solve with a finite difference scheme the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−U (x) d2σ
dx2
= d1

R a+1
0

M1 (a) v1 (a) p1da

+d2
R a+2
0

M2 (a) v2 (a) p2da

+d5
R a+5
0

M5 (a) v5 (a) p5da+ U (x) f (x) ,

σ (0) = σ0
dσ
dx
(Lj+1) + eασ (Lj+1) = σL

(74)

and compute σj+1 = σ (Lj+1) .

Step 7. Computation of the real values

ni,jl =M i
l

pi,jl
U j

, i = 0, na+1 , j = 0, Nx, l = 1, 5,

Step 8. Transformation of the vectors of discrete values into functions of a

and x.

Step 9. Computation of the integrals of nl, with respect to a and computation
of the function Φ.

Step 10. Computation of the function Γ (x) and of Λ∗.

5.5. Numerical results
Based on the numerical algorithm presented above we wrote a Matlab

programme in order to obtain a numerical solution of the problem we dealt
with in this thesis. We fixed certain numerical values for some of the problem
parameters and we let others vary between certain limits in order to put into
evidence the influence of the medicinal treatment on the epidermis. The
conclusions of the numerical analysis we made on the problem we dealt with
in this thesis are presented in the final part of the thesis. The figures below
represent one of the cases studied in this thesis and contain the variation of
the concentration of the treatment σ, the variations of the functions λi that
represent the rate of transformation of the cells of type i as a result of the
medicinal treatment, i ∈ {1, 5} , the variation of the density of the number
of cells related to x (measured in cells/μm3) which is defined by the formulaZ a+i

0

ni (a, x) da, i = 1, 5,

and the variation of the cohesion function Γ.
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